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ABSTRACT

Introduction: Metabolic syndrome (MetS) is a growing health hazard,
characterized by central adiposity, hypertension, dyslipidaemia, and
hyperglycaemia. This study assesses the predictive utility of HOMA-IR
and HOMA-Beta (B) for MetS among young adults. Methods: A cross-
sectional study was conducted with 403 college going young adults,
categorized into four obesity phenotypes: Metabolically Healthy Normal
Weight (MHNW), Metabolically Healthy Obese (MHO), Metabolically
Unhealthy Normal Weight (MUNW), and Metabolically Unhealthy Obese
(MUOQ). Correlations of HOMA-IR and HOMA- B with cardiometabolic
parameters were assessed by using Pearson’s correlation. Logistic
regression, and ROC analysis were done to determine predictive accuracy
of HOMA-IR and HOMA- B for MetS. Results: HOMA-p exhibited better
predictive accuracy for MetS than HOMA-IR. MUO had significantly
lower HOMA-Beta (75.28 + 13.35) than MHNW (123.03 £ 72.21). MHO
showed well-maintained pB-cell function (HOMA-B: 103.73 + 38.60)
despite higher HOMA-IR (2.03 £ 0.61). HOMA-B correlated negatively
with fasting blood glucose (r = -0.89, MHO; r = -0.59, MUO), while
HOMA-IR correlations were weaker (r = 0.17 to 0.35). ROC analysis
showed HOMA-B (AUC = 0.77) outperformed HOMA-IR (AUC = 0.38),
insulin levels (AUC = 0.49), and HbAlc (AUC = 0.25). Conclusion:
HOMA- B is a superior predictor of MetS, highlighting p-cell function
over insulin resistance in young adults. Early detection and phenotype-
based interventions are crucial for prevention.
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INTRODUCTION
Clustering of cardio-metabolic risk factors,
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including  central  adiposity,  hypertension,
hyperglycemia, and high triglycerides (TG) with
low high-density lipoprotein (HDL) cholesterol
levels, is termed as Metabolic syndrome (MetS).
Predominant driving force behind occurrence of
MetS can be obesity. Obesity is commonly
predictable as a risk factor for type 2 diabetes
mellitus (T2DM). Additionally, it is crucial to
understand how non-obese individuals with similar
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insulin sensitivity or beta cell functionality like
their obese counterparts in terms of T2DM risk are
exist. Contrastingly, existence of obese individuals
with normal insulin sensitivity and less risk of
T2DM, particularly among Asian adults, is not well
understood.*? Its essential to understand the
interplay among B-cell functionality, insulin
resistance (IR) and cardiometabolic risk factors to
address the complex patho-physiology underlying
metabolic dysfunction across diverse obesity
phenotypes. Previous research reveals that p-cell
dysfunction is a critical factor in the progression of
T2DM and its associated complications, while IR
significantly ~ contributes to  MetS and
cardiovascular risks among adult population.3*
Numerous studies have confirmed significant
associations among these markers and metabolic
syndrome components, emphasizing their
prognostic utility.>® This study was aimed to
provide novel insights into the roles of HOMA-3
and HOMA-IR as predictors of MetS and explore
the correlation between those markers with cardio-
metabolic risk factors across distinct phenotypic
young adults from Central India, demographically
unique and understudied population. By identifying
significant associations between these markers and
cardiometabolic risk factors, it highlights the
importance of early detection and targeted
interventions to mitigate risks of metabolic
syndrome.

MATERIALS AND METHODS:

Study Design: This is a cross-sectional study
which was performed according to STROBE
guidelines. College-going students of both genders
aged 18-25 years were included for this study from
Rajnandgaon, a district of Chhattisgarh central
India.

Sampling Technique: A multi-stage sampling

technique was implemented for this study.

Representation of both urban and rural young adult

populations were ensured. The process involved:

1. Geographical Stratification: Urban and rural
areas in the district were identified to account
for socio-economic and lifestyle differences.

2. Cluster Selection: Five urban and five rural
clusters were randomly chosen for participant
recruitment.

3. Institutional Sampling: Within selected
clusters, educational institutions  were
randomly selected, and college-going students
were systematically enrolled for this study. A
total of 403 participants of both male and
female were recruited, who were meeting
inclusion criteria (18-25 years, non-smoker,
non-alcoholic, no chronic metabolic diseases,
willing for participation). Exclusion criteria
included pregnancy, lactation, medication
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affecting  metabolism, chronic  systemic
illnesses or undergoes any surgical methods
within last six months.

Metabolic Syndrome Definition: Metabolic
syndrome (MetS) was defined based on the
modified criteria of the International Diabetes
Federation (IDF) for South Asian populations.[”!
Participants were identified as having MetS if they
exhibited at least three criteria among following
five components: 1. Abdominal Obesity: Waist
circumference >90 c¢cm for men and >80 cm for
women. 2. Elevated Triglycerides: TG >150
mg/dL 3. Reduced HDL Cholesterol: HDL <40
mg/dL for men and <50 mg/dL for women. 4.
Elevated Blood Pressure: Systolic BP >130
mmHg or diastolic BP >85 mmHg. 5. Elevated
Fasting Glucose: FBG >100 mg/dL. Obesity
Phenotype  distribution:  Participants  were
categorized into four phenotypes based on BMI and
accordance  of  metabolic  syndrome: 1.
Metabolically Healthy Normal Weight (MHNW),
2. Metabolically Healthy Obese (MHO), 3.
Metabolically ~ Unhealthy ~ Normal  Weight
(MUNW), and 4. Metabolically Unhealthy Obese
(MUO0).8

Data Collection and biochemical analysis
methods: Demographics and lifestyle data were
collected by wusing structured questionnaires.
Anthropometric measurements like Height, weight,
BMI (classified based on the revised consensus
guidelines for India), waist circumference (WC),
and hip circumference (HC) were measured by
following standard protocol.’® Blood Pressure was
Measured using an automated sphygmomanometer
after the participant had rested for at least 5
minutes. Biochemical Analysis like Fasting blood
glucose (FBG), lipid profiles (TG, HDL), HbALC,
fasting serum Insulin (FSI) level were assessed
from venous blood samples collected after an
overnight fast of 8-12 hours by using fully
automated biochemistry analyzer (Beckman
Coulter-Au680). HOMA-IR and HOMA-B were
calculated by using those formula HOMA-IR=
FBG (mmol/L) *FSI(Mu/ml)/22.5, and HOMA-B

=20*FSI(Mu/ml)/ [FBG (mmol/L)-3.5]
respectively. 112
Statistical ~ Analysis:  Descriptive  statistics

summarized population characteristics. Pearson’s
correlations and logistic regression models
examined relationships and predictors of metabolic
outcomes. Statistical analysis was done by using
statisty software and graphical representation was
generated by using google colab.

RESULTS:
The study included 403 participants, with 63.56%
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residing in urban areas and 36.44% in rural regions.
Among urban participants, 58.2% were female and
41.8% were male, while in rural areas, 48.1% were
female and 51.9% were male. Regarding lifestyle
factors, 52.6% engaged in regular physical activity,
while 47.4% did not. Dietary habits showed 38.2%
were vegetarian and 61.8% were non-vegetarian.
Family history of metabolic disorders was reported
as follows: hypertension (26.8%), diabetes
(18.3%), and dyslipidemia (14.6%). The results are
summarized in the following tables (table no. 1-3)
and figures (Fig no.1-3):

The results represented in Table 1 highlight distinct
metabolic profiles across the four obesity
phenotypes, highlighting the critical role of p-cell
function in metabolic health. While HOMA-IR is
highest in the MHO group, suggesting increased
insulin resistance, their relatively preserved j-cell
function (HOMA-B: 103.73 £+ 38.60) indicates a
compensatory mechanism that may protect against
metabolic  dysfunction. In  contrast, MUO
individuals exhibit the lowest HOMA-B values
(75.28 £ 13.35) and reduced insulin levels (7.74 £
1.16), suggesting significant B-cell dysfunction,
which aligns with their poorer glycemic control
(HbAlc: 5.52 + 0.43).

Table 2 indicates that lower p-cell function
(HOMA-B) quartiles correlate strongly with
adverse cardiometabolic profiles, including higher

fasting glucose, blood pressure, and waist
circumference. In contrast, insulin resistance
(HOMA-IR) quartiles show less consistent

associations. This highlights B-cell dysfunction as a
critical early indicator of metabolic risk in young
adults.

The logistic regression analysis in Table 3 indicates
significant metabolic predictors associated with
metabolic syndrome (MetS) in young adults.
Among the evaluated markers, HOMA-Beta
demonstrated a significant positive association
(coefficient = 0.09, p < 0.001), suggesting that each
unit increase in B-cell function increases the odds
of MetS. Conversely, fasting serum insulin (FSI)
showed a significant negative association
(coefficient = -1.13, p < 0.001), implying reduced
odds of MetS with elevated insulin levels.
Interestingly, neither HOMA-IR nor HbAlc
reached statistical significance, highlighting that
insulin  resistance and glycaemic control,
traditionally regarded as prominent predictors,
might have limited predictive utility in young adult
populations compared to B-cell function.

DISCUSSION:
Observation of cardio-metabolic profiles across
obesity phenotypes among young adults displays a
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complex interplay between obesity and metabolic
wellbeing. Remarkably MHO individuals show
higher HOMA-IR levels compared to their MHNW
counterparts, suggesting an inherent insulin
resistance often linked with obesity. Though, their
well-maintained HOMA-BETA and insulin levels
indicate a compensatory B-cell function that
capable of conserving glucose homeostasis, a
phenomenon that corroborates findings by Primeau
et al., who noted a similar metabolic resilience in
MHO individuals.®®  Contrastingly, ~MUNW
individuals display metabolic profiles resembling
those of Metabolically Unhealthy Obese (MUO)
individuals, characterized by compromised p-cell
function and elevated HOMA-IR. This indicates
significant metabolic risks independent of excess
body fat, supporting study by Stefan et al., which
identified metabolic dysfunction in non-obese
individuals.'* These findings challenge the
conventional perspective that links obesity directly
with metabolic diseases and emphasize the need for
a nuanced approach to assess metabolic health that
goes beyond body weight. These diverse metabolic
disturbances seen in MHO and MUNW phenotypes
is highlighting the variability in metabolic
responses among distinct individuals which
underscore the complexity of metabolic regulation
in obesity. Kahn and Flier’s report shows the broad
spectrum of insulin resistance in obesity which
aligning with the higher insulin resistance observed
in our MHO group despite their relatively stable j3-
cell function.® Furthermore, pronounced B-cell
dysfunction observed in MUO phenotypes supports
the "lipotoxicity" theory proposed by Unger and
Zhou, where chronic exposure to high free fatty
acids leads to B-cell impairment.t® To understand
this pathophysiology is important to develop
effective therapeutic interventions targeted at
specific metabolic profiles for improving the
management strategies of metabolic dysfunctions
and potentially delaying or preventing the onset of
type 2 diabetes in young adults.

Our report demonstrations a detailed breakdown of
cardiometabolic risk factors distributed across three
quartiles of HOMA-B and HOMA-IR among a
young adult population. This analysis helps
explicate the relationships between insulin
resistance and P-cell functionality with various
cardiometabolic components, including waist
circumference (WC), systolic blood pressure
(SBP), diastolic blood pressure (DBP), fasting
blood glucose (FBG), triglycerides (TG), and high-
density lipoprotein cholesterol (HDL). Our findings
from young adults indicate that higher levels of
insulin resistance (HOMA-IR) correlate with
adverse cardiometabolic markers such as increased
waist circumference and elevated triglyceride
levels, while reduced B-cell function (HOMA-B) is



Journal of Molecular Science

Volume 35 Issue 2, Year of Publication 2025, Page 238-245

Journal of Molecular Science

associated with higher fasting blood glucose and
lower HDL cholesterol. Similar relationships,
demonstrated by Matthews D R et al. (1985),
which also highlight the impact of insulin
resistance on metabolic syndrome components.t’
However, contrasting studies like that of Ferrannini
E et al. (2005) suggest that insulin resistance may
have a less pronounced effect on HDL cholesterol
in different populations, representing that metabolic
responses can vary significantly by demographic
characteristics.*®! Additionally, Kahn B B and Flier
J S (2000) emphasized that even minor alterations
in insulin sensitivity could substantially affect
cardiovascular risk factors among young adults.?®
Insulin  resistance provides an overview of
endothelial dysfunction and heightened
cardiovascular risks, while inadequate [-cell
function leads to persistent hyperglycemia,
underscoring the development of metabolic
syndrome. The scatter plots distinctly illustrate the
correlations between HOMA-B and HOMA-IR
with various cardiometabolic markers across
different obesity phenotypes, revealing critical
insights into the pathophysiological mechanisms
behind metabolic health in diverse groups. In MHO
individuals, the strong negative correlation between
HOMA-B and FBG supports the notion that despite
higher adiposity, effective p-cell compensatory
mechanisms help maintain glucose homeostasis.
This finding aligns with research by Bluher et al.
(2019), who demonstrated that some obese
individuals maintain metabolic health through
robust B-cell function.! However, this contrasts
with findings by Wang et al. (2020), who suggest
that many MHO individuals eventually experience
B-cell failure, leading to diabetes onset.' For
MUO individuals, higher correlations between
HOMA-IR and adverse markers such as increased
TG and WC emphasize the role of insulin
resistance in driving metabolic syndrome
components, consistent with study by Samuel and
Shulman (2016), who explained the pathways by
which  insulin  resistance  worsens lipid
dysregulation and adiposity.?® Conversely, insights
from the research by Smith et al. (2017) highlight
that not all obese individuals exhibit this pattern,
which specify that changeability may be due to
dissimilar distribution of regional adipose tissue,
genetic and lifestyle  factors.’l  Patho-
physiologically, insulin resistance in MUO is often
linked to chronic inflammation and ectopic fat
deposition, which impairs insulin signaling
pathways, as detailed was described by Johnson et
al. (2018).22

In this study logistic regression analysis reveals
that enhanced p-cell functionality (HOMA-B)
significantly reduces the risk of metabolic
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syndrome in young adults, as indicated by its
strong  statistical ~ significance.  Conversely,
hyperinsulinemia, although initially compensatory,
may lead to increased metabolic syndrome risk
over time due to B-cell fatigue. Our report also
shows traditional markers like HOMA-IR and
HbA1c were not significant predictors, highlighting
the need for early interventions targeting insulin
sensitivity and B-cell health to effectively manage
and prevent metabolic complications in this
population. Gastaldelli A et al. emphasize that B-
cell dysfunction significantly predicts metabolic
syndrome.?? Holman RR et al. linked early
hyperinsulinemia to later insulin resistance and
metabolic complications, supporting the theory of
compensatory  insulin  secretion  becoming
pathological over time.?* Additionally, Sakurai M et
al. identified genetic markers predisposing
individuals to p-cell dysfunction and insulin
resistance, suggesting a targeted approach for early
detection.® Lastly, Lee | et al. , Naja et al. and
Garg M K et al. suggest that dietary modifications
can significantly improve insulin dynamics and
reduce metabolic syndrome risk by enhancing
insulin  sensitivity.?62®  Previous  research
collectively underscores the multifactorial nature of
metabolic syndrome, advocating for integrated
strategies that address lifestyle, genetic, and
physiological factors to prevent its onset in young
adults.

The ROC curve analysis targeting young adults in
central India provides insightful data on the
predictive utility of metabolic markers for
metabolic syndrome. Notably, HOMA-B emerges
with the highest AUC (0.77), indicating that B-cell
functionality is a crucial determinant in preventing
early metabolic  disturbances in  younger
populations. This result reflects the B-cells' capacity
to adequately respond to insulin demands before
the onset of more severe insulin resistance—a key
pathophysiological factor in maintaining early
metabolic health. Inversely, insulin levels and
HOMA-IR show lower AUCs (0.49 and 0.38,
respectively), suggesting that HOMA-IR is less
effective to predict the initial stages of MetS among
young adults. Makers like HOMA-IR and HbAlc
are unable to determine the early patho-
physiological changes such as insulin signaling
efficiency and peripheral tissue response, which are
important in young adults who may not yet exhibit
pronounced MetS.2° The less predictability of
HbAlc (AUC: 0.25) to diagnose MetS further
supports that, HOMA-IR and HbAlc may a good
predictor for longer-term glycemic and metabolic
imbalance rather than acute metabolic shifts, which
are more relevant in younger diagnosed with early
stage Mets.?  Understanding these patho-
physiological interphase is vital to develop early
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intervention approaches tailored to young adults.
Current report also emphasizing the need for a
multi-directional intervention that integrates both
glycemic and insulin response assessments to
effectively identify and manage emerging
metabolic risks. HOMA-IR, which assesses fasting
insulin and glucose levels to determine insulin
resistance, may not capture the early, understated
stages of metabolic disturbances in younger
populations who are generally healthier or at the
initial phases of insulin resistance.

Our result is reliable with previous findings of
Matthews et al., who noted that HOMA-IR is more
effective in diagnosing clear, clinically evident
insulin resistance rather than the subtler, initial
stages often seen in younger adults.t” Moreover, the
population-specific  factors such as genetic
predispositions, dietary habits, and physical activity
levels significantly influence the manifestation and
detection of insulin resistance. The impact of these
factors is supported by the study of Kahn and Flier
(2000), who addressed how insulin dynamics could
vary based on an individual's genetic and
environmental context, particularly in less diverse
or younger populations.’®> Furthermore, in young
individuals, compensatory mechanisms such as
hyperinsulinemia can mask early insulin resistance,
making it difficult to detect with HOMA-IR. In this
phenomenon elevated insulin levels temporarily
compensate for insulin resistance, which was
described by Ferrannini et al. (2005), highlighting
how such compensation can delay the clinical
presentation of metabolic syndrome.

Our study provides novel insights into the
predictive utility of HOMA-B for metabolic
syndrome (MetS) in young adults, challenging the
conventional reliance on insulin resistance markers
such as HOMA-IR. Unlike previous studies that
primarily emphasize insulin resistance in MetS
pathophysiology, current study highlights B-cell
function as a superior predictor, suggesting that
early impairments in B-cell activity may play a
more pivotal role in MetS progression than insulin
resistance alone. Furthermore, current study
advances the understanding of obesity phenotypes,
demonstrating that metabolically healthy obese
(MHO) individuals maintain preserved p-cell
function despite elevated insulin resistance,
whereas metabolically unhealthy obese (MUO)
individuals exhibit significant B-cell dysfunction.
These findings reinforce the necessity for
phenotype-specific screening and intervention
strategies, potentially refining current MetS risk
stratification models. Among its strengths, our
study benefits from a well-characterized group of
young adults and employs rigorous statistical
approaches, including Pearson’s correlation,
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logistic regression, and ROC analysis, to establish
the predictive accuracy of metabolic markers.
However, the cross-sectional design impedes causal
inferences, limiting the ability to determine
whether B-cell dysfunction precedes MetS onset or
arises as a consequence. Additionally, the study’s
focus on a specific age group and potentially
homogeneous population may restrict
generalizability to broader demographics. Future
longitudinal investigations incorporating diverse
populations and additional metabolic biomarkers
are essential to validate these findings and further
elucidate the role of P-cell function in MetS
pathogenesis.

CONCLUSION:

Finding from this current study on the utility of
HOMA-IR and HOMA-Beta in detecting metabolic
syndrome in a young adult population in central
India highlight higher predictive capability of
HOMA-Beta. This marker, reflecting p-cell
functionality, is more effective than HOMA-IR in
identifying early signs of metabolic syndrome,
suggesting that B-cell health is vital in assessing
metabolic risks in young adults. The inadequate
utility of HOMA-IR underscores the need to
improve current screening protocols to incorporate
more sensitive indicators of early metabolic
changes. By prioritizing [-cell functionality
through markers like HOMA-Beta, healthcare
providers can better target preventative measures
and interventions, enhancing the management of
metabolic syndrome. This approach ensures a more
proactive and tailored strategy in tackling
metabolic health issues among young adults,
aiming to curb the progression of metabolic
syndrome at its nascent stage.
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HOMA-IR, HOMA-BETA, Insulin Levels, and HbAlc

Mark | MHNW MHO MUNW | MUO

ers

HOM | 1.80 + 203+ 1.98 + 1.90 +

A-IR | 048 0.61 0.58 0.50

HOM | 123.03 + 103.73 + 96.29 + 75.28 +

A- 72.21 38.60 29.29 13.35

BETA

Insuli | 8.19+ 8.29 + 8.08 + 774+

n 0.15 0.98 1.25 1.16

Level

HbAl | 5.01+ 5.27 + 5.40 + 5.52 +

c 0.61 0.30 0.64 0.43
This table summarizes the central tendencies

(mean) and variability (standard deviation) of these
markers for each phenotype.

Table 2: Cardiometabolic Risk Factor Distribution Across HOMA- B and HOMA-IR Quartiles Among Young Adults population

Metabolic HOMA-B_Q1 HOMA-IR_Q1 HOMA-g_Q2 | HOMA-IR_Q2 HOMA- g_Q3 HOMA-IR_Q3
risk factors | (Mean+SD) (Mean£SD) (Mean£SD) (MeanSD) (Mean£SD) (Mean£SD)
wcC 84.19 +9.57 79.80 £ 7.27 82.28 +8.76 81.50 +8.32 78.93+5.17 84.20 + 8.85
(cm) 95% ClI: 1.63 95% CI: 1.23 95% CI: 1.49 95% Cl: 1.43 95% CI: 0.89 95% CI: 1.52
IQR: 12.50 IQR: 8.00 IQR: 13.00 IQR: 12.00 IQR: 7.00 IQR: 12.00
SBP 125.99 £5.91 122.12 + 8.62 122.92 + 8.55 123.34 £8.43 121.80 +9.33 125.32 £7.29
(mmHg) 95% ClI: 1.01 95% CI: 1.46 95% CI: 1.46 95% Cl: 1.45 95% CI: 1.60 95% CI: 1.25
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IQR: 10.00 IQR: 6.00 IQR: 8.00 IQR: 8.00 IQR: 6.00 IQR: 10.00
DBP 83.35 + 5.08 79.12 * 6.62 80.52 + 6.47 80.82 * 6.25 78.83 * 6.69 82.83%5.72
(mmHg) 95% CI: 0.87 95% CI: 1.12 95% CI: 1.10 95% CI: 1.07 95% CI: 1.15 | 95% CI: 0.98
IQR: 12.00
IQR: 9.00 IQR: 8.00 IQR: 4.00 IQR: 6.00 IQR: 8.00
FBG
(mg/dl) 97.53 + 4.00 87.96 + 7.34 92.20 £ 4.44 90.79 + 6.08 83.65 * 4.30 94.83 % 6.13
95% CI: 0.68 95% Cl: 1.24 95% CI: 0.76 95% Cl: 1.04 95% Cl: 0.74 95% Cl: 1.05
IQR: 3.00 IQR: 10.00 IQR: 5.90 IQR: 10.00 IQR: 7.80 IQR: 6.00
TG (mg/dl) | 150.50 + 7.20 148.43 * 6.69 14856 +5.95 | 148,51+ 6.41 148.47 £ 6.47 150.62 * 6.55
95% Cl: 1.23 95% Cl: 1.13 95% CI: 1.01 95% CI: 1.10 95% ClI: 1.11 95% Cl: 1.12
IQR: 6.00 IQR: 3.00 IQR: 3.00 IQR: 3.00 IQR: 3.00 IQR: 5.00
HDL 47.05 + 8.34 49.96 + 8.08 47.62 + 8.28 48.88 + 8.70 50.89 * 8.23 46.64 + 8.23
(mg/dl) 95% CI: 1.42 95% CI: 1.37 95% CI: 1.41 95% CI: 1.49 95% CI: 1.41 95% CI: 1.41
IQR: 16.00 IQR: 14.00 IQR: 15.50 IQR: 14.98 IQR: 17.00 IQR: 14.00

This table represents the mean + standard deviation, 95% confidence intervals (CI), and interquartile ranges
(IQR) for cardiometabolic components—across three quartiles of HOMA-BETA and HOMA-IR.

Table 3: Logistic Regression analysis for Metabolic Predictors to predict metabolic syndrome among young adult

Predictors Coefficient Standard Error z-value p-value 95% CI Lower 95% CI Upper
Const. 5.56 2.96 1.88 0.06 -0.22 11.37
HOMA-IR 0.33 0.33 0.99 0.32 -0.32 0.97

HOMA-B 0.09 0.02 4.93 <0.001 0.052 0.12

FSI (mircoU/mL) -1.13 0.23 -4.89 <0.001 -1.59 -0.68

HbAlc (%) -0.60 0.41 -1.48 0.14 -1.41 0.20

This table presents the logistic regression coefficients, standard errors, z-values, p-values, and 95% confidence
intervals (Cl) for key metabolic markers—HOMA-IR (insulin resistance), HOMA-BETA (p-cell function),
insulin levels, and HbAlc—used to predict the likelihood of metabolic syndrome in young adults.
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Figure 1: Scatter Plots shows Correlations between HOMA-IR and cardiometabolic components across phenotype

Figure Legend: The scatter plots illustrate the correlations between insulin resistance (HOMA-IR) and various
cardiometabolic components across different obesity phenotypes. The correlation coefficients (r) values are

provided for each plot.
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Figure 2: Scatter Plots shows Correlations between HOMA-Beta and cardiometabolic components across phenotype

correlations between pancreatic Beta cell function
(HOMA-B) and cardiometabolic components for
different obesity phenotypes. The correlation
coefficients (r) values are provided for each plot.

ROC Curves for Predictive Markers
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Figure 3: Receiver Operating Characteristic (ROC) curves
for four different metabolic markers.

Footnote: Each curve plots the true positive rate
(sensitivity) against the false positive rate
(specificity), providing a measure of each marker's
ability to correctly identify individuals with
metabolic syndrome.
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