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ABSTRACT 
Introduction: Metabolic syndrome (MetS) is a growing health hazard, 

characterized by central adiposity, hypertension, dyslipidaemia, and 

hyperglycaemia. This study assesses the predictive utility of HOMA-IR 

and HOMA-Beta (β) for MetS among young adults. Methods: A cross-

sectional study was conducted with 403 college going young adults, 

categorized into four obesity phenotypes: Metabolically Healthy Normal 

Weight (MHNW), Metabolically Healthy Obese (MHO), Metabolically 

Unhealthy Normal Weight (MUNW), and Metabolically Unhealthy Obese 

(MUO). Correlations of HOMA-IR and HOMA- β with cardiometabolic 

parameters were assessed by using Pearson’s correlation. Logistic 

regression, and ROC analysis were done to determine predictive accuracy 

of HOMA-IR and HOMA- β for MetS. Results: HOMA-β exhibited better 

predictive accuracy for MetS than HOMA-IR. MUO had significantly 

lower HOMA-Beta (75.28 ± 13.35) than MHNW (123.03 ± 72.21). MHO 

showed well-maintained β-cell function (HOMA-β: 103.73 ± 38.60) 

despite higher HOMA-IR (2.03 ± 0.61). HOMA-β correlated negatively 

with fasting blood glucose (r = -0.89, MHO; r = -0.59, MUO), while 

HOMA-IR correlations were weaker (r = 0.17 to 0.35). ROC analysis 

showed HOMA-β (AUC = 0.77) outperformed HOMA-IR (AUC = 0.38), 

insulin levels (AUC = 0.49), and HbA1c (AUC = 0.25). Conclusion: 

HOMA- β is a superior predictor of MetS, highlighting β-cell function 

over insulin resistance in young adults. Early detection and phenotype-

based interventions are crucial for prevention. 
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INTRODUCTION 
Clustering of cardio-metabolic risk factors, 

including central adiposity, hypertension, 

hyperglycemia, and high triglycerides (TG) with 

low high-density lipoprotein (HDL) cholesterol 

levels, is termed as Metabolic syndrome (MetS). 

Predominant driving force behind occurrence of 

MetS can be obesity. Obesity is commonly 

predictable as a risk factor for type 2 diabetes 

mellitus (T2DM). Additionally, it is crucial to 

understand how non-obese individuals with similar 
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insulin sensitivity or beta cell functionality like 

their obese counterparts in terms of T2DM risk are 

exist. Contrastingly, existence of obese individuals 

with normal insulin sensitivity and less risk of 

T2DM, particularly among Asian adults, is not well 

understood.1,2 Its essential to understand the 

interplay among β-cell functionality, insulin 

resistance (IR) and cardiometabolic risk factors to 

address the complex patho-physiology underlying 

metabolic dysfunction across diverse obesity 

phenotypes. Previous research reveals that β-cell 

dysfunction is a critical factor in the progression of 

T2DM and its associated complications, while IR 

significantly contributes to MetS and 

cardiovascular risks among adult population.3,4 

Numerous studies have confirmed significant 

associations among these markers and metabolic 

syndrome components, emphasizing  their 

prognostic utility.5,6 This study was aimed to 

provide novel insights into the roles of HOMA-β 

and HOMA-IR as predictors of MetS and explore 

the correlation between those markers with cardio-

metabolic risk factors across distinct phenotypic 

young adults from Central India,  demographically 

unique and understudied population. By identifying 

significant associations between these markers and 

cardiometabolic risk factors, it highlights the 

importance of early detection and targeted 

interventions to mitigate risks of metabolic 

syndrome. 

 

MATERIALS AND METHODS:  
Study Design: This is a cross-sectional study 

which was performed according to STROBE 

guidelines. College-going students of both genders 

aged 18–25 years were included for this study from 

Rajnandgaon, a district of Chhattisgarh central 

India. 

 

Sampling Technique: A multi-stage sampling 

technique was implemented for this study. 

Representation of both urban and rural young adult 

populations were ensured. The process involved: 

1. Geographical Stratification: Urban and rural 

areas in the district were identified to account 

for socio-economic and lifestyle differences. 

2. Cluster Selection: Five urban and five rural 

clusters were randomly chosen for participant 

recruitment. 

3. Institutional Sampling: Within selected 

clusters, educational institutions were 

randomly selected, and college-going students 

were systematically enrolled for this study. A 

total of 403 participants of both male and 

female were recruited, who were meeting 

inclusion criteria (18–25 years, non-smoker, 

non-alcoholic, no chronic metabolic diseases, 

willing for participation). Exclusion criteria 

included pregnancy, lactation, medication 

affecting metabolism, chronic systemic 

illnesses or undergoes any surgical methods 

within last six months. 

 

Metabolic Syndrome Definition: Metabolic 

syndrome (MetS) was defined based on the 

modified criteria of the International Diabetes 

Federation (IDF) for South Asian populations.[7,8] 

Participants were identified as having MetS if they 

exhibited at least three criteria among following 

five components: 1. Abdominal Obesity: Waist 

circumference ≥90 cm for men and ≥80 cm for 

women. 2. Elevated Triglycerides: TG ≥150 

mg/dL 3. Reduced HDL Cholesterol: HDL <40 

mg/dL for men and <50 mg/dL for women. 4. 

Elevated Blood Pressure: Systolic BP ≥130 

mmHg or diastolic BP ≥85 mmHg. 5. Elevated 

Fasting Glucose: FBG ≥100 mg/dL. Obesity 

Phenotype distribution: Participants were 

categorized into four phenotypes based on BMI and 

accordance of metabolic syndrome: 1. 

Metabolically Healthy Normal Weight (MHNW), 

2. Metabolically Healthy Obese (MHO), 3. 

Metabolically Unhealthy Normal Weight 

(MUNW), and 4. Metabolically Unhealthy Obese 

(MUO).9 

 

Data Collection and biochemical analysis 

methods: Demographics and lifestyle data were 

collected by using structured questionnaires. 

Anthropometric measurements like Height, weight, 

BMI (classified based on the revised consensus 

guidelines for India), waist circumference (WC), 

and hip circumference (HC) were measured by 

following standard protocol.10 Blood Pressure was 

Measured using an automated sphygmomanometer 

after the participant had rested for at least 5 

minutes. Biochemical Analysis like Fasting blood 

glucose (FBG), lipid profiles (TG, HDL), HbA1C, 

fasting serum Insulin (FSI) level were assessed 

from venous blood samples collected after an 

overnight fast of 8-12 hours by using fully 

automated biochemistry analyzer (Beckman 

Coulter-Au680). HOMA-IR and HOMA-β were 

calculated by using those formula HOMA-IR= 

FBG (mmol/L) *FSI(Mu/ml)/22.5, and HOMA-β 

=20*FSI(Mu/ml)/ [FBG (mmol/L)-3.5] 

respectively. 11,12  

 

Statistical Analysis: Descriptive statistics 

summarized population characteristics. Pearson’s 

correlations and logistic regression models 

examined relationships and predictors of metabolic 

outcomes. Statistical analysis was done by using 

statisty software and graphical representation was 

generated by using google colab.  

 

RESULTS: 
The study included 403 participants, with 63.56% 
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residing in urban areas and 36.44% in rural regions. 

Among urban participants, 58.2% were female and 

41.8% were male, while in rural areas, 48.1% were 

female and 51.9% were male. Regarding lifestyle 

factors, 52.6% engaged in regular physical activity, 

while 47.4% did not. Dietary habits showed 38.2% 

were vegetarian and 61.8% were non-vegetarian. 

Family history of metabolic disorders was reported 

as follows: hypertension (26.8%), diabetes 

(18.3%), and dyslipidemia (14.6%). The results are 

summarized in the following tables (table no. 1-3) 

and figures (Fig no.1-3): 

 

The results represented in Table 1 highlight distinct 

metabolic profiles across the four obesity 

phenotypes, highlighting the critical role of β-cell 

function in metabolic health. While HOMA-IR is 

highest in the MHO group, suggesting increased 

insulin resistance, their relatively preserved β-cell 

function (HOMA-β: 103.73 ± 38.60) indicates a 

compensatory mechanism that may protect against 

metabolic dysfunction. In contrast, MUO 

individuals exhibit the lowest HOMA-β values 

(75.28 ± 13.35) and reduced insulin levels (7.74 ± 

1.16), suggesting significant β-cell dysfunction, 

which aligns with their poorer glycemic control 

(HbA1c: 5.52 ± 0.43). 

 

Table 2 indicates that lower β-cell function 

(HOMA-β) quartiles correlate strongly with 

adverse cardiometabolic profiles, including higher 

fasting glucose, blood pressure, and waist 

circumference. In contrast, insulin resistance 

(HOMA-IR) quartiles show less consistent 

associations. This highlights β-cell dysfunction as a 

critical early indicator of metabolic risk in young 

adults. 

 

The logistic regression analysis in Table 3 indicates 

significant metabolic predictors associated with 

metabolic syndrome (MetS) in young adults. 

Among the evaluated markers, HOMA-Beta 

demonstrated a significant positive association 

(coefficient = 0.09, p < 0.001), suggesting that each 

unit increase in β-cell function increases the odds 

of MetS. Conversely, fasting serum insulin (FSI) 

showed a significant negative association 

(coefficient = -1.13, p < 0.001), implying reduced 

odds of MetS with elevated insulin levels. 

Interestingly, neither HOMA-IR nor HbA1c 

reached statistical significance, highlighting that 

insulin resistance and glycaemic control, 

traditionally regarded as prominent predictors, 

might have limited predictive utility in young adult 

populations compared to β-cell function. 

 

DISCUSSION:  
Observation of cardio-metabolic profiles across 

obesity phenotypes among young adults displays a 

complex interplay between obesity and metabolic 

wellbeing. Remarkably MHO individuals show 

higher HOMA-IR levels compared to their MHNW 

counterparts, suggesting an inherent insulin 

resistance often linked with obesity. Though, their 

well-maintained HOMA-BETA and insulin levels 

indicate a compensatory β-cell function that 

capable of conserving glucose homeostasis, a 

phenomenon that corroborates findings by Primeau 

et al., who noted a similar metabolic resilience in 

MHO individuals.13 Contrastingly, MUNW 

individuals display metabolic profiles resembling 

those of Metabolically Unhealthy Obese (MUO) 

individuals, characterized by compromised β-cell 

function and elevated HOMA-IR. This indicates 

significant metabolic risks independent of excess 

body fat, supporting study by Stefan et al., which 

identified metabolic dysfunction in non-obese 

individuals.14 These findings challenge the 

conventional perspective that links obesity directly 

with metabolic diseases and emphasize the need for 

a nuanced approach to assess metabolic health that 

goes beyond body weight. These diverse metabolic 

disturbances seen in MHO and MUNW phenotypes 

is highlighting the variability in metabolic 

responses among distinct individuals which 

underscore the complexity of metabolic regulation 

in obesity. Kahn and Flier’s report shows the broad 

spectrum of insulin resistance in obesity which 

aligning with the higher insulin resistance observed 

in our MHO group despite their relatively stable β-

cell function.15 Furthermore, pronounced β-cell 

dysfunction observed in MUO phenotypes supports 

the "lipotoxicity" theory proposed by Unger and 

Zhou, where chronic exposure to high free fatty 

acids leads to β-cell impairment.16 To understand 

this pathophysiology is important to develop 

effective therapeutic interventions targeted at 

specific metabolic profiles for improving the 

management strategies of metabolic dysfunctions 

and potentially delaying or preventing the onset of 

type 2 diabetes in young adults. 

 

Our report demonstrations a detailed breakdown of 

cardiometabolic risk factors distributed across three 

quartiles of HOMA-β and HOMA-IR among a 

young adult population. This analysis helps 

explicate the relationships between insulin 

resistance and β-cell functionality with various 

cardiometabolic components, including waist 

circumference (WC), systolic blood pressure 

(SBP), diastolic blood pressure (DBP), fasting 

blood glucose (FBG), triglycerides (TG), and high-

density lipoprotein cholesterol (HDL). Our findings 

from young adults indicate that higher levels of 

insulin resistance (HOMA-IR) correlate with 

adverse cardiometabolic markers such as increased 

waist circumference and elevated triglyceride 

levels, while reduced β-cell function (HOMA-β) is 
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associated with higher fasting blood glucose and 

lower HDL cholesterol. Similar relationships, 

demonstrated by Matthews D R et al. (1985), 

which also highlight the impact of insulin 

resistance on metabolic syndrome components.17 

However, contrasting studies like that of Ferrannini 

E et al. (2005) suggest that insulin resistance may 

have a less pronounced effect on HDL cholesterol 

in different populations, representing that metabolic 

responses can vary significantly by demographic 

characteristics.[18] Additionally, Kahn B B and Flier 

J S (2000) emphasized that even minor alterations 

in insulin sensitivity could substantially affect 

cardiovascular risk factors among young adults.15 

 

Insulin resistance provides an overview of 

endothelial dysfunction and heightened 

cardiovascular risks, while inadequate β-cell 

function leads to persistent hyperglycemia, 

underscoring the development of metabolic 

syndrome. The scatter plots distinctly illustrate the 

correlations between HOMA-β and HOMA-IR 

with various cardiometabolic markers across 

different obesity phenotypes, revealing critical 

insights into the pathophysiological mechanisms 

behind metabolic health in diverse groups. In MHO 

individuals, the strong negative correlation between 

HOMA-β and FBG supports the notion that despite 

higher adiposity, effective β-cell compensatory 

mechanisms help maintain glucose homeostasis. 

This finding aligns with research by Bluher et al. 

(2019), who demonstrated that some obese 

individuals maintain metabolic health through 

robust β-cell function.1 However, this contrasts 

with findings by Wang et al. (2020), who suggest 

that many MHO individuals eventually experience 

β-cell failure, leading to diabetes onset.[19] For 

MUO individuals, higher correlations between 

HOMA-IR and adverse markers such as increased 

TG and WC emphasize the role of insulin 

resistance in driving metabolic syndrome 

components, consistent with study by Samuel and 

Shulman (2016), who explained the pathways by 

which insulin resistance worsens lipid 

dysregulation and adiposity.20 Conversely, insights 

from the research by Smith et al. (2017) highlight 

that not all obese individuals exhibit this pattern, 

which specify that changeability may be due to 

dissimilar distribution of regional adipose tissue, 

genetic and lifestyle factors.[21] Patho-

physiologically, insulin resistance in MUO is often 

linked to chronic inflammation and ectopic fat 

deposition, which impairs insulin signaling 

pathways, as detailed was described by Johnson et 

al. (2018).22 

 

In this study logistic regression analysis reveals 

that enhanced β-cell functionality (HOMA-β) 

significantly reduces the risk of metabolic 

syndrome in young adults, as indicated by its 

strong statistical significance. Conversely, 

hyperinsulinemia, although initially compensatory, 

may lead to increased metabolic syndrome risk 

over time due to β-cell fatigue. Our report also 

shows traditional markers like HOMA-IR and 

HbA1c were not significant predictors, highlighting 

the need for early interventions targeting insulin 

sensitivity and β-cell health to effectively manage 

and prevent metabolic complications in this 

population. Gastaldelli A et al. emphasize that β-

cell dysfunction significantly predicts metabolic 

syndrome.23 Holman RR et al. linked early 

hyperinsulinemia to later insulin resistance and 

metabolic complications, supporting the theory of 

compensatory insulin secretion becoming 

pathological over time.24 Additionally, Sakurai M et 

al. identified genetic markers predisposing 

individuals to β-cell dysfunction and insulin 

resistance, suggesting a targeted approach for early 

detection.25 Lastly, Lee I et al. , Naja et al. and 

Garg M K et al. suggest that dietary modifications 

can significantly improve insulin dynamics and 

reduce metabolic syndrome risk by enhancing 

insulin sensitivity.26-28 Previous research 

collectively underscores the multifactorial nature of 

metabolic syndrome, advocating for integrated 

strategies that address lifestyle, genetic, and 

physiological factors to prevent its onset in young 

adults. 

 

The ROC curve analysis targeting young adults in 

central India provides insightful data on the 

predictive utility of metabolic markers for 

metabolic syndrome. Notably, HOMA-β emerges 

with the highest AUC (0.77), indicating that β-cell 

functionality is a crucial determinant in preventing 

early metabolic disturbances in younger 

populations. This result reflects the β-cells' capacity 

to adequately respond to insulin demands before 

the onset of more severe insulin resistance—a key 

pathophysiological factor in maintaining early 

metabolic health. Inversely, insulin levels and 

HOMA-IR show lower AUCs (0.49 and 0.38, 

respectively), suggesting that HOMA-IR is less 

effective to predict the initial stages of MetS among 

young adults. Makers like HOMA-IR and HbA1c 

are unable to determine the early patho-

physiological changes such as insulin signaling 

efficiency and peripheral tissue response, which are 

important in young adults who may not yet exhibit 

pronounced MetS.20 The less predictability of 

HbA1c (AUC: 0.25) to diagnose MetS further 

supports that, HOMA-IR and HbA1c may a good 

predictor  for longer-term glycemic and metabolic 

imbalance rather than acute metabolic shifts, which 

are more relevant in younger diagnosed with early 

stage  Mets.[29] Understanding these patho-

physiological interphase is vital to develop early 
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intervention approaches tailored to young adults. 

Current report also emphasizing the need for a 

multi-directional intervention that integrates both 

glycemic and insulin response assessments to 

effectively identify and manage emerging 

metabolic risks. HOMA-IR, which assesses fasting 

insulin and glucose levels to determine insulin 

resistance, may not capture the early, understated 

stages of metabolic disturbances in younger 

populations who are generally healthier or at the 

initial phases of insulin resistance. 

 

Our result is reliable with previous findings of 

Matthews et al., who noted that HOMA-IR is more 

effective in diagnosing clear, clinically evident 

insulin resistance rather than the subtler, initial 

stages often seen in younger adults.17 Moreover, the 

population-specific factors such as genetic 

predispositions, dietary habits, and physical activity 

levels significantly influence the manifestation and 

detection of insulin resistance. The impact of these 

factors is supported by the study of Kahn and Flier 

(2000), who addressed how insulin dynamics could 

vary based on an individual's genetic and 

environmental context, particularly in less diverse 

or younger populations.15 Furthermore, in young 

individuals, compensatory mechanisms such as 

hyperinsulinemia can mask early insulin resistance, 

making it difficult to detect with HOMA-IR. In this 

phenomenon elevated insulin levels temporarily 

compensate for insulin resistance, which was 

described by Ferrannini et al. (2005), highlighting 

how such compensation can delay the clinical 

presentation of metabolic syndrome.18 

 

Our study provides novel insights into the 

predictive utility of HOMA-β for metabolic 

syndrome (MetS) in young adults, challenging the 

conventional reliance on insulin resistance markers 

such as HOMA-IR. Unlike previous studies that 

primarily emphasize insulin resistance in MetS 

pathophysiology, current study highlights β-cell 

function as a superior predictor, suggesting that 

early impairments in β-cell activity may play a 

more pivotal role in MetS progression than insulin 

resistance alone. Furthermore, current study 

advances the understanding of obesity phenotypes, 

demonstrating that metabolically healthy obese 

(MHO) individuals maintain preserved β-cell 

function despite elevated insulin resistance, 

whereas metabolically unhealthy obese (MUO) 

individuals exhibit significant β-cell dysfunction. 

These findings reinforce the necessity for 

phenotype-specific screening and intervention 

strategies, potentially refining current MetS risk 

stratification models. Among its strengths, our 

study benefits from a well-characterized group of 

young adults and employs rigorous statistical 

approaches, including Pearson’s correlation, 

logistic regression, and ROC analysis, to establish 

the predictive accuracy of metabolic markers. 

However, the cross-sectional design impedes causal 

inferences, limiting the ability to determine 

whether β-cell dysfunction precedes MetS onset or 

arises as a consequence. Additionally, the study’s 

focus on a specific age group and potentially 

homogeneous population may restrict 

generalizability to broader demographics. Future 

longitudinal investigations incorporating diverse 

populations and additional metabolic biomarkers 

are essential to validate these findings and further 

elucidate the role of β-cell function in MetS 

pathogenesis. 

 

CONCLUSION:  
Finding from this current study on the utility of 

HOMA-IR and HOMA-Beta in detecting metabolic 

syndrome in a young adult population in central 

India highlight higher predictive capability of 

HOMA-Beta. This marker, reflecting β-cell 

functionality, is more effective than HOMA-IR in 

identifying early signs of metabolic syndrome, 

suggesting that β-cell health is vital in assessing 

metabolic risks in young adults. The inadequate 

utility of HOMA-IR underscores the need to 

improve current screening protocols to incorporate 

more sensitive indicators of early metabolic 

changes. By prioritizing β-cell functionality 

through markers like HOMA-Beta, healthcare 

providers can better target preventative measures 

and interventions, enhancing the management of 

metabolic syndrome. This approach ensures a more 

proactive and tailored strategy in tackling 

metabolic health issues among young adults, 

aiming to curb the progression of metabolic 

syndrome at its nascent stage. 
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Table 1: Phenotype-Specific Mean ± Standard Deviation for 

HOMA-IR, HOMA-BETA, Insulin Levels, and HbA1c 

Mark

ers 

MHNW MHO MUNW MUO 

HOM

A-IR 
1.80 ± 
0.48 

2.03 ± 
0.61 

1.98 ± 
0.58 

1.90 ± 
0.50 

HOM

A-

BETA 

123.03 ± 

72.21 

103.73 ± 

38.60 

96.29 ± 

29.29 

75.28 ± 

13.35 

Insuli

n 

Level 

8.19 ± 

0.15 

8.29 ± 

0.98 

8.08 ± 

1.25 

7.74 ± 

1.16 

HbA1

c 
5.01 ± 
0.61 

5.27 ± 
0.30 

5.40 ± 
0.64 

5.52 ± 
0.43 

This table summarizes the central tendencies 

(mean) and variability (standard deviation) of these 

markers for each phenotype. 

 
Table 2: Cardiometabolic Risk Factor Distribution Across HOMA- β and HOMA-IR Quartiles Among Young Adults population 

Metabolic 

risk factors 

HOMA-β_Q1 
(Mean±SD) 

HOMA-IR_Q1 
(Mean±SD) 

HOMA- β_Q2 
(Mean±SD) 

HOMA-IR_Q2 
(Mean±SD) 

HOMA- β_Q3 
(Mean±SD) 

HOMA-IR_Q3 
(Mean±SD) 

WC 

(cm) 

84.19 ± 9.57 79.80 ± 7.27 82.28 ± 8.76 81.50 ± 8.32 78.93 ± 5.17 84.20 ± 8.85 

95% CI: 1.63 95% CI: 1.23 95% CI: 1.49 95% CI: 1.43 95% CI: 0.89 95% CI: 1.52 

IQR: 12.50 IQR: 8.00 IQR: 13.00 IQR: 12.00 IQR: 7.00 IQR: 12.00 

SBP 

(mmHg) 

125.99 ± 5.91 122.12 ± 8.62 122.92 ± 8.55 123.34 ± 8.43 121.80 ± 9.33 125.32 ± 7.29 

95% CI: 1.01 95% CI: 1.46 95% CI: 1.46 95% CI: 1.45 95% CI: 1.60 95% CI: 1.25 
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IQR: 10.00 IQR: 6.00 IQR: 8.00 IQR: 8.00 IQR: 6.00 IQR: 10.00 

DBP 

(mmHg) 

83.35 ± 5.08 79.12 ± 6.62 80.52 ± 6.47 80.82 ± 6.25 78.83 ± 6.69 82.83 ± 5.72 

95% CI: 0.87 95% CI: 1.12 95% CI: 1.10 95% CI: 1.07 95% CI: 1.15 
IQR: 12.00 

95% CI: 0.98 

IQR: 9.00 IQR: 8.00 IQR: 4.00 IQR: 6.00  IQR: 8.00 

FBG  

(mg/dl) 

      

97.53 ± 4.00 87.96 ± 7.34 92.20 ± 4.44 90.79 ± 6.08 83.65 ± 4.30 94.83 ± 6.13 

95% CI: 0.68 95% CI: 1.24 95% CI: 0.76 95% CI: 1.04 95% CI: 0.74 95% CI: 1.05 

IQR: 3.00 IQR: 10.00 IQR: 5.90 IQR: 10.00 IQR: 7.80 IQR: 6.00 

TG  (mg/dl) 150.50 ± 7.20 148.43 ± 6.69 148.56 ± 5.95 148.51 ± 6.41 148.47 ± 6.47 150.62 ± 6.55 

95% CI: 1.23 95% CI: 1.13 95% CI: 1.01 95% CI: 1.10 95% CI: 1.11 95% CI: 1.12 

 IQR: 6.00 IQR: 3.00 IQR: 3.00 IQR: 3.00 IQR: 3.00 IQR: 5.00 

HDL   

(mg/dl) 

47.05 ± 8.34 49.96 ± 8.08 47.62 ± 8.28 48.88 ± 8.70 50.89 ± 8.23 46.64 ± 8.23 

95% CI: 1.42 95% CI: 1.37 95% CI: 1.41 95% CI: 1.49 95% CI: 1.41 95% CI: 1.41 

IQR: 16.00 IQR: 14.00 IQR: 15.50 IQR: 14.98 IQR: 17.00 IQR: 14.00 

This table represents the mean ± standard deviation, 95% confidence intervals (CI), and interquartile ranges 

(IQR) for cardiometabolic components—across three quartiles of HOMA-BETA and HOMA-IR. 

 
Table 3: Logistic Regression analysis for Metabolic Predictors to predict metabolic syndrome among young adult 

Predictors Coefficient Standard Error z-value p-value 95% CI Lower 95% CI Upper 

Const. 5.56 2.96 1.88 0.06 -0.22 11.37 

HOMA-IR 0.33 0.33 0.99 0.32 -0.32 0.97 

HOMA-β 0.09 0.02 4.93 <0.001 0.052 0.12 

FSI (mircoU/mL) -1.13 0.23 -4.89 <0.001 -1.59 -0.68 

HbA1c (%) -0.60 0.41 -1.48 0.14 -1.41 0.20 

This table presents the logistic regression coefficients, standard errors, z-values, p-values, and 95% confidence 

intervals (CI) for key metabolic markers—HOMA-IR (insulin resistance), HOMA-BETA (β-cell function), 

insulin levels, and HbA1c—used to predict the likelihood of metabolic syndrome in young adults. 

 

 
Figure 1: Scatter Plots shows Correlations between HOMA-IR and cardiometabolic components across phenotype 

 

Figure Legend: The scatter plots illustrate the correlations between insulin resistance (HOMA-IR) and various 

cardiometabolic components across different obesity phenotypes. The correlation coefficients (r) values are 

provided for each plot. 
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Figure 2: Scatter Plots shows Correlations between HOMA-Beta and cardiometabolic components across phenotype 

 

Figure Legend: This scatter plots illustrate the 

correlations between pancreatic Beta cell function 

(HOMA-β) and cardiometabolic components for 

different obesity phenotypes. The correlation 

coefficients (r) values are provided for each plot.  

 

 
Figure 3: Receiver Operating Characteristic (ROC) curves 

for four different metabolic markers.  

 

Footnote: Each curve plots the true positive rate 

(sensitivity) against the false positive rate 

(specificity), providing a measure of each marker's 

ability to correctly identify individuals with 

metabolic syndrome. 


